Error Analysis for Numerical Formulation of Particle Filter
نویسندگان
چکیده
As an approximation of the optimal stochastic filter, particle filter is a widely used tool for numerical prediction of complex systems when observation data are available. In this paper, we conduct an error analysis from a numerical analysis perspective. That is, we investigate the numerical error, which is defined as the difference between the numerical implementation of particle filter and its continuous counterpart, and demonstrate that the error consists of discretization errors for solving the dynamic equations numerically and sampling errors for generating the random particles. We then establish convergence of the numerical particle filter to the continuous optimal filter and provide bounds for the convergence rate. Remarkably, our analysis suggests that more frequent data assimilation may lead to larger numerical errors of the particle filter. Numerical examples are provided to verify the theoretical findings.
منابع مشابه
کاهش تعداد ماهوارهها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذرهای
The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...
متن کاملAnalysis of error propagation in particle filters with approximation
This paper examines the impact of approximation steps that become necessary when particle filters are implemented on resource-constrained platforms. We consider particle filters that perform intermittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we derive time-uniform bounds on the weak-sense Lp error and present associa...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملParticle Model Predictive Control: Tractable Stochastic Nonlinear Output-Feedback MPC
We combine conditional state density construction with an extension of the Scenario Approach for stochastic Model Predictive Control to nonlinear systems to yield a novel particle-based formulation of stochastic nonlinear output-feedback Model Predictive Control. Conditional densities given noisy measurement data are propagated via the Particle Filter as an approximate implementation of the Bay...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015